Project 5: Learning
CS4013/5013: Artificial Intelligence
Due 11:59PM April 5, 2011

Introduction

This project brings you back to mancala where you will use learning to improve your
mancala agent, specifically by improving your evaluation function. CS 4013 students will
use one learning method and CS 5013 students will use two learning methods.

Because Mancala is actually a solved game! for the 4-stone 6-pit version that we used for
project 3, we will be modifying the game slightly using the following variations (as suggested
in the wikipedia page).

e The number of initial stones in each pit will be a variable, ranging from 4 to 8. You can
query GameBoard to find out the number of initial stones. This will be set randomly
at the start of each game.

e The ability to capture stones from placing your last seed in an empty pit will be turned
off (this will be configurable through the xml files in case you or we need to turn it
back on).

e The ability to count the leftover stones at the end of the game as part of your opponent’s
mancala will also be turned off. Again, this will be controlled through an xml file in
case you or we need to turn it back on.

For this project, all students (CS 4013 and CS 5013) will implement decision trees and
use them to improve your evaluation functions. There are multiple approaches to using
learning to improve your evaluation function and I suggest one here but other approaches
are possible! The only rule is that all students must use decision trees and CS 5013 students
must also use another learning method from clustering, regression, or kernel regression.

One approach to using decision trees in your evaluation function would be to have your
agent play hundreds of games against other agents (your own and the heuristics) using the
rule variations described above. This agent would record features about each game (e.g. by
writing out to a text file) that describe the current game situation and the eventual game

Thttp://en.wikipedia.org/wiki/Kalah



outcome. Once sufficient data are acquired, the agent would learn a decision tree to predict
the probability of a win at each step and use that tree for the evaluation function. In a
similar vein, a CS 5013 student could record data about a specific feature and use clustering
to discretize that feature and then feed the cluster data into the tree (in addition to the
other features). Other approaches are possible!

Extra-credit opportunities

To keep grades within a fair range, all extra credit will be capped at 10 points. This
means that no project can receive a grade higher than 110, no matter if they win the ladder,
find great exploits, and are very creative.

Wanted dead or alive: bugs or exploits in the simulator

We are reasonably certain that you cannot exploit the simulator. However, any project
has bugs and we want to know about them! If you find a bug or an exploit, you can receive
extra credit according to the following scale:

e 5 points: If you find an exploit and report it to us you can receive 5 points extra
credit upon verification of the report. Note, we know of two exploits for which you
cannot get extra credit as they are already discovered. Since both are both extremely
difficult to fix and extremely difficult to implement, I’'m not listing them here.

e 10 points: If you find an exploit and give us a fix for it, you can receive 10 points
extra credit upon verification of both the exploit and the fix.

e 1-3 points: General simulator bugs are much more likely than exploits. Finding a
bug and reporting it can get you 1 point. Fixing the bug and giving us the fix (you
can’t check it in directly but you can give it to us in the bug report) can get you three
points. Both bug and fix must be verified for any extra credit to be awarded.

Competition ladder

The class-wide competition ladder will start on March 25th (the day after the project is
handed out). You will be ranked by your average score against the other opponents in the
ladder.

The first place player will receive one extra point for each night that that player wins
the ladder up to a maximum of 5 points. To win, you must be ranked above the random



player. The second place player will receive 1/2 extra point for each night that the player is
in second place. No player can receive more than 5 extra credit points from the ladder and
points will be distributed down the ladder accordingly should the maximum be reached.

Wanted (alive please): creative individuals

Creativity is highly encouraged! To make this real, there are up to 10 points of extra-
credit available for creative solutions. Some ideas here include: function approximation (this
environment is perfect for function approximation), reinforcement learning, and hierarchical
learning (e.g. learning to choose among the high-level behaviors and learning better low-level
behaviors).

e Document it in your writeup! I can’t very well give extra credit unless I know you did
something extra.

e You must still be doing either evolutionary computation

e Remember that by being creative I am referring to the algorithm and not to the ability
to creatively download code. All project code must be written exclusively by you except
for the sample code that we provide.

Implementation details

You should have your agent collect its data and then learn the tree using a class outside
the simulator (e.g. don’t have your agent call the tree learning function). Then just have
your agent load in the tree. One way to do this is to make use of the Xstream() package that
you used on the previous assignment. This gives you each java object serialization but you
can also just the default java serialization as well (which saves the objects out to a binary
file). Don’t go overboard and implement a generalized tree parser! I want you to learn a
tree and to use the tree but not to have to go overboard in data structure implementation -
make use of what java provides.

Those pesky details

1. Update your aiproject code from project 4. The rule changes described above are not
implemented in the earlier versions of the code.



. We have provided a minimax agent for you to use if you want. This agent only
implements minimax and not alpha-beta pruning. Also, because minimax is an answer
to a previous assignment, it is available only on D2L (and not in the repository). You
can download it from D2L and install it in your package and use it if you don’t want
to use your minimax client from project 3 (but you are also perfectly welcome to do
use your client and it will probably work better since you presumably implemented
pruning!).

. Create a mancala agent that collects learning data, learns a tree, and uses that tree
(and other learning if CS 5013) inside the evaluation function, as described above.

. Ensure that your player runs on linux on the CSN class machines. You can ssh into
these machines or go into the lab personally to verify this. Java should be in your path
by default. If it is not, java lives in:

/opt/java/bin/java
. Submit your project on codd.cs.ou.edu using the submit script as described below.

(a) Log into codd.cs.ou.edu using the account that was created for you for this class.
Your username is your 4x4 and your default password is cs#4x4.

(b) Make sure your working directory contains all the files you want to turn in. Using
a similar submit command to the previous projects, you would use the following
command to turn in your code. Don’t forget to turn in your knowledge file too!
Just list it on the command line below as a regular file.

/opt/ai4013/bin/submit CS4013 Project5 *.java mancalainit.xml

(c) After the project deadline, the above command will not accept submissions. If
you want to turn in your project late, use:

/opt/ai4013/bin/submit CS4013 ProjectblLate *.java mancalainit.xml
. As with the previous projects, you can test the performance of your agent on the test

ladder using the following command. Don’t forget to submit your knowledge file too!
Just list it on the command line below as a regular file.

/opt/ai4013/bin/submit CS4013 ProjectbTestLadder *.java mancalainit.xml



Grading rubric

The vast majority of your points go to correctly implementing evolutionary computa-
tion. These are broken out as follows. NOTE: CS 5013 students must implement a second
approach for one of these categories and compare the results. For example, a CS 5013 stu-
dent could implement two selection approaches or two fitness functions or two chromosome
representations and compare the results in the writeup.

e 50 points for correctly implementing decision trees. A correct decision tree will learn
outside of the simulator and will grow a tree using information gain. Your tree can
either use probability estimation trees or classification trees (whichever works best for
how you put it into the evaluation function).

— 45 points if there is only one minor mistake. An example of a minor mistake would
be a minor error in information gain, off-by-one errors, not correctly calculating
probabilities or class labels at the leaves, etc.

— 40 points if there are several minor mistakes.

— 35 points if you have one major mistake. An example of a major mistake would be
not using information gain correctly (e.g. implementing only the binary version
when you have more than binary choices), incorrectly choosing attributes that do
not yield the highest gain, etc.

— 30 if there are several major mistakes.

— 25 points if you implement some form of learning that turns out a tree but contains
enough mistakes that you are unsure exactly how it makes a tree

— 15 points for an agent that at least does something other than random movements.

e 30/15 (4013/5013) points for correctly taking the trained trees and using them to in
your evaluation function

— 25/10 points for one minor mistake. An example would be correctly bringing the
decision tree over (using if/then rules) but then failing to use it to intelligently
control your agent (e.g. you never adjust the agent’s actions based on the tree or
you never adjust the probability thresholds for the agent).

— 20/8 points for several minor mistakes or one major mistake. An example of a
major mistake would be incorrectly bringing the decision tree into the agent.



e For CS 5013 only: 15 points for correctly implementing a second learning method
(most likely clustering) and using it somehow in the agent (either by feeding it into
the decision tree or by using it directly to guide the agent’s actions).

e 10 points: We will randomly choose from one of the following good coding practices to
grade for these 10 points. Note that this will be included on every project. Are your
files well commented? Are your variable names descriptive (or are they all i, j, and k)7
Do you make good use of classes and methods or is the entire project in one big flat
file? This will be graded as follows:

— 10 points for well commented code, descriptive variables names or making good
use of classes and methods

— 5 points if you have partially commented code, semi-descriptive variable names,
or partial use of classes and methods

— 0 points if you have no comments in your code, variables are obscurely named, or
all your code is in a single flat method (not sure you can do that with A* anyway!)

e 10 points for your writeup. A full-credit writeup will describe your implementation of
learning, include a learning curve showing how your trees grow, and a discussion of
how you used the information from the trees to improve your agent. CS 5013 students
must explain their second learning method and how they integrated/used it as well.



