Project 2: Learning Robots
Computer Science 4013: Artificial Intelligence
Due 12:01AM March 30, 2010
Note: NOT the beginning of class

Introduction

Now that your bots are moving around intelligently, it’s time for learning! For this
project, your bots have many more action choices available - specifically through the option
cards. Option cards are additions to your robot that you can acquire by ending a TURN
(not a register cycle) on a 2-wrench square. If your bot does this, it gets a choice of healing
2 damage or drawing an option card. Option cards can give the robot special powers or
special weapons. The specific list of option cards that have currently been implemented is
below but please note that you can implement additional option cards and turn the code in
to be placed in the repository for extra credit. If a robot is damaged, option cards can be
exchanged instead of obtaining one point of damage.

e Ablative Coat: This option card enables the robot to absorb a specified amount of
damage without actually taking damage. When the amount has been reached, the
card is disabled.

e Extra Memory: This option card enables the robot to receive extra cards each deal.
This can enable a robot to make a better program! This option lasts until the robot
discards it.

e Modified Movements: This set of option cards enables the robot to modify specific
movement cards. One option enables the robot to move 4 instead of 3, one enables the

robot to execute a no-op (move 0), and one enables the robot to backup 2 instead of
1.

e Rear Laser: This set of option cards enables the robot to shoot a laser from its back
as well as its front. The laser can shoot with 1 or 2 points of damage (depending on
the card).

e Double Front Laser: This option card enables the robot to shoot a laser with 2
beams (causing 2 damage) from its front laser.

The goal for this project is to use learning to make your robot even smarter. Although
the goal of touching the most flags in as few steps as possible remains, your score now
incorporates kills and deaths (so it behooves you to both stay alive and to kill the other
bots):

total number of deaths total number of games

total number of kills total number of flags
0.5 0

Because there are so many ways that you can incorporate learning into your bot’s behav-
ior, this project is more open-ended than project 1. If you do want to do something other
than the decision-tree approach discussed below, You must talk to Dr McGovern first!.
Learning methods can be very labor intensive and Dr McGovern wants to ensure that you
don’t choose a project that can’t be completed in time.

For this project, you should learn at least one probability estimation tree based on the
bot’s behavior. For example, you could train a tree to predict whether a bot will be successful
at hitting an opponent robot. Or you could train a tree to see if your moves will take you
to where you expected (e.g. did another robot interfere). The possibilities for prediction
using trees are quite large! To do this, you will need to write code to save out all possible
attributes and data to a data file and then run your agent a number of times to collect data.
I suggest using the laddertest to do this as it enables you to run your agent without the
GUI repeatedly and quickly. Once you have the data saved, you should write a decision tree
learner that grows a tree based on your data. Once you have the tree trained, you should use
the results of the tree back in your bot in an intelligent manner. For example, if you trained
a tree to predict probability of hitting another robot, you might choose to be aggressive only
if you have a high probability of success.

Extra-credit opportunities

To keep grades within a fair range, all extra credit will be capped at 10 points. This
means that no project can receive a grade higher than 110, no matter if they win the ladder,
find great exploits, and are very creative.

Wanted dead or alive: bugs or exploits in the simulator

We are reasonably certain that you cannot exploit the simulator (say by directly affecting
your opponents damage levels or by directly moving yourself to the goal location). However,
any project has bugs and we want to know about them! If you find a bug or an exploit, you
can receive extra credit according to the following scale:

e 3 points: If you find an exploit and report it to us you can receive 3 points extra credit
upon verification of the report. Note, we know of two exploits for which you cannot
get extra credit as it is already discovered. Since both are both extremely difficult to
fix and extremely difficult to implement, I'm not listing them here.

e 6 points: If you find an exploit and give us a fix for it, you can receive 6 points extra
credit upon verification of both the exploit and the fix.

e 1 or 2 points: General simulator bugs are much more likely than exploits. Finding
a bug and reporting it can get you 1 point. Fixing the bug and giving us the fix (you
can’t check it in directly but you can give it to us in the bug report) can get you two
points. Both bug and fix must be verified for any extra credit to be awarded.

Competition ladder

The class-wide competition ladder will run every night from the day the project is handed
out. Extra credit opportunities start 2 weeks before the project is due. For this project,
each game will either be played against each other (in a round robin fashion) or against
hard-coded heuristic agents. Players will be ranked by score given above.

The first place player will receive one extra point for each night that that player wins the
ladder up to a maximum of 5 points. To win, you must be ranked above the Flag Collector
player. The second place player will receive 1/2 extra point for each night that the player is
in second place. No player can receive more than 5 extra credit points from the ladder and
points will be distributed down the ladder accordingly should the maximum be reached.

Wanted (alive please): creative individuals

Creativity is highly encouraged! To make this real, there are up to 10 points of extra-
credit available for creative solutions. Some ideas here include different learning techniques
(e.g. incorporating clustering or using GAs), creating a forest instead of a single tree, incor-
porating pruning into your tree, etc. If you choose to implement anything that you consider
creative, please do the following:

e Document it in your writeup! I can’t give extra credit unless I know you did something
extra.

e Your agent must still be learning! Come see Dr McGovern for approval of any ideas.
I'm not going to stop you from pursuing something you really want to try but I just
want to make sure your project is doable.

e Remember that by being creative I am referring to the algorithm and not to the
ability to creatively download code. All project code must be written exclusively by
your group except for the sample players that we provide.

Option cards

I am sure the class can come up with some great new option card ideas and implemen-
tations. The list of all option cards provided in the board game is on D2L and we have only
implemented a fraction of these so far. You can either choose to implement some of the
remaining option cards or you can make up your own ideas! I know you are creative and
will come up with some fun ideas! Any functioning option cards (you MUST include a unit
test!) can be emailed to Dr McGovern for incorporation into the repository. Extra credit
will be awarded for each such card.

Implementation details

All of your source code must reside in your src/4x4 directory and be in your 4x4 package.
You may name your files within this package anything that makes sense to you (remember
that we are grading on coding style as well).

Your Project 1 agents will not work in this project due to an API change!
However, the changes are relatively minimal and your agents should work very quickly. The
biggest changes are:

1. You are now allowed to chose your initial heading at the start of the game and whenever
you come back from being dead. This method is called getInitialHeading() and should
be implemented in your agent.

2. You can now choose to power down/shutdown your agent. This leaves your agent
on the board but clears all its damage. It can be shot or otherwise damaged while
shutdown so be careful to shutdown in a safe place! To choose this, you should look
at Program.setPowerDownNextTurn and call this from your program while inside en-
dAction. Do not call it from startAction or it will be ignored.

3. You can now receive and use option cards. To make use of this, you will need to
implement a RobotListener (this is an interface) that takes the state of the world
and tell the simulator whether your bot wants to accept an option card. This is only
called when you end a turn on a 2-wrench square. There are also two methods in the
RobotListener that tell the simulator whether you want to use an option card given

4

the state of the world and whether you want to exchange the option card in favor of
not being damaged.

As before, the agent also contains a startAction(), endAction(), and initialize() method
by default. startAction() is called each time an agent is about to begin a turn and it must
return a valid action for the agent to execute. endAction() is called after all agents have
ended their actions but before the simulator goes to the next turn. This may be left empty if
you have no need for cleaning up after a turn. initialize() is called when an agent is created
(but not when it comes back to life from being killed).

Using methods from the Java SDK is acceptable (and encouraged as there are some nice
built-in graph classes and a PriorityQueue class) but downloading or using code from any
other sources is not allowed. See the syllabus for more details on what is considered academic
misconduct. As discussed below, any additional files you create should be turned in along
with your main agent class.

Competing heuristics
For this project, you may play against the following heuristics:

e Random makes completely random moves. Not very bright and hardly ever reaches
a flag! Dies frequently but can get in your way easily.

e FlagCollector is our naive flag collecting agent (it just aims straight for them). It
does a decent job of aiming right for the flag but it gets stuck in many situations.

e Amy’s A* agent [will put my A* agent in the competition for a better heuristic.
Note that this agent does not look at kills or hits and only goes for the flag (but it
does so better than Flag Collector!). This code will also be available to you (see below
for details).

e Not So Random: Dan and Sam have kindly agreed to release their A* agent which
is MUCH faster than mine! It will be on D2L (see below).

Those pesky details

1. Update your Roborally code from project 1. If you got subclipse working, you can
update your code from within eclipse using Team — Update. If not, use the command
line or tortoiseSvn to do ”"svn update”. If you did not get the code checked out for
project 0, follow the instructions to check out the code in that writeup.

5

. Download my A* agent from D2L. Dan and Sam are also releasing their A* agent and
it will appear on D2L as well. For both agents, put them into src and unzip the file.
This will give you two GOOD heuristics to compare to and you are welcome to use
either or both of our code for improving your navigation.

. Change the worldconfig.xml file in examples.robotest to point to your agent in src/4x4.
The detailed instructions for this are in project 0. Make sure to copy over a clien-
tinit.xml in the src/4x4 directory so your agent knows how to start. Because you will
most likely want to run the ladder this time, also change the ladderconfig.xml and
roboconfig.xml in examples.laddertest to point to your agent.

. Create a robot that uses learning as described above. If you are doing trees, don’t
collect your data and learn online but rather collect it offline, learn in separate code
(outside the agent), and then have your agent use the final tree. Build and test your
code using the ant compilation system within eclipse or using ant on the command line
if you are not using eclipse (we highly recommend eclipse or another IDE!).

. Test your player on a sample ladder. This will ensure that the agent runs on the CSN
linux machines and that you have the agent correctly configured. To do this, we have
created a submission script that will take your agent as input and run it against the
heuristic agents several times and output the information to your terminal window.
WARNING: It will output a LOT of text so either be ready to scroll or cat the output
to a file. To submit to this agent, do the following:

/opt/ai4013/bin/submit CS4013 Project2TestLadder *.java clientinit.xml

where you can simply list the java files instead of using *.java if you choose. Note that
the xml file MUST be named clientinit.xml!

. Submit your project on codd.cs.ou.edu using the submit script as described below.

(a) Log into codd.cs.ou.edu using the account that was created for you for this class.
Your username is your 4x4 and your default password is cs#4x4. Remember to
change your password!

(b) Make sure your working directory contains all the files you want to turn in. All
files should live in the package 4x4. For example, if all of your code lives in
MyRoborallyAgent. java, you would submit your code using the following com-
mand. The clientinit file is required to run your client!

/opt/ai4013/bin/submit CS4013 Project2 MyRoborallyAgent.java clientinit.xml

If you have extra code in AStar. java and Graph.java, you would submit using
the following command:

/opt/ai4013/bin/submit CS4013 Project2 *.java clientinit.xml

(c) After the project deadline, the above command will not accept submissions. If
you want to turn in your project late, use:

/opt/ai4013/bin/submit CS4013 Project2Late *.java clientinit.xml

Point distribution

e 50 points for correctly implementing decision trees. A correct decision tree will learn
outside of the simulator and will grow a tree using information gain. Each leaf node
will have probabilities (instead of only labels).

— 45 points if there is only one minor mistake. An example of a minor mistake would
be a minor error in information gain, off-by-one errors, not correctly calculating
probabilities at the leaves, etc.

— 40 points if there are several minor mistakes.

— 35 points if you have one major mistake. An example of a major mistake would be
not using information gain correctly (e.g. implementing only the binary version
when you have more than binary choices), incorrectly choosing attributes that do
not yield the highest gain, etc.

— 30 if there are several major mistakes.

— 25 points if you implement some form of learning that turns out a tree but contains
enough mistakes that you are unsure exactly how it makes a tree

— 15 points for an agent that at least does something other than random movements.

e 25 points for correctly taking the trained trees and using them to intelligently control
your robot

— 20 points for one minor mistake. An example would be correctly bringing the
decision tree over (using if/then rules) but then failing to use it to intelligently
control your agent (e.g. you never adjust the agent’s actions based on the tree or
you never adjust the probability thresholds for the agent)

7

— 15 points for several minor mistakes or one major mistake. An example of a major
mistake would be incorrectly bringing the decision tree into the agent.

e 10 points: We will randomly choose from one of the following good coding practices to
grade for these 10 points. Note that this will be included on every project. Are your
files well commented? Are your variable names descriptive (or are they all i, j, and k)?
Do you make good use of classes and methods or is the entire project in one big flat
file? This will be graded as follows:

— 10 points for well commented code, descriptive variables names or making good
use of classes and methods

— 5 points if you have partially commented code, semi-descriptive variable names,
or partial use of classes and methods

— 0 points if you have no comments in your code, variables are obscurely named, or
all your code is in a single flat method (not sure you can do that with A* anyway!)

e 15 points for your writeup. A full-credit writeup will describe your implementation of
learning, include a learning curve showing how your trees grow, and a discussion of
how you used the information from the trees to improve your agent.

e As with the previous project, we will deduct 5 points from your total score if your
password has not changed from the default (cs#4x4) password.

