Project 2
Computer Science 4013: Artificial Intelligence
Due 12:01AM March 28, 2008
Note: NOT the beginning of class

Introduction

This project will use evolutionary computation to intelligently choose from a set of high-
level behaviors. Your A* agent will be a useful piece of this project. You may also use the
provided A* code if you do not want to use your project 1 code.

Since the last project focused entirely on collecting beacons, you may have wondered why
you would want to collect those silly beacons! The answer is: now that people can shoot
at you, beacons will be useful in maintaining high energy levels and not dying. Each bullet
that hits you costs you energy so so collecting beacons will be very useful for living longer!
The project 2 ladder will be ranked by rounded kill average, then deaths, then beacons.

Your learning agent will learn to intelligently choose among the following high-level be-
haviors:

e Move to nearest beacon (AStar code!)

e Move near to another ship’s location (presumably to shoot, also uses AStar code)
e Shoot at ship

e Shoot at asteroid (by popular request!)

e Lay a mine (by popular request!)

e Raise shields (by popular request!)

e Move near to nearest asteroid (presumably to follow it, not to ram it, also uses AStar

code)
e Flee from asteroid(s) - you tell it how many asteroids to flee from

e Flee from ship(s) - you tell it how many ships to flee from



Your task is to 1) design an appropriate fitness function to aid the agent in choosing
among these behaviors and 2) design an encoding for each individual that will enable the
agent to choose the best actions under the right circumstances and 3) implement an evo-
lutionary computation approach that will enable your agent to learn to choose intelligently
among the high-level behaviors.

For part 1, you should design a fitness function that rewards the agent for performing
well and penalizes it for performing badly. You will need to decide what the criteria for
performing well and badly are but I suggest that you do not make your fitness function
overly complicated. For the fitness function, you should focus on your goals for your agent
and not on how the agent will accomplish those goals. For example, remember the example
of swinging your feet above a bar that we discussed in class. A good fitness function here
tells the agent how successful it is but it does not tell the agent how to accomplish the goal.

Part 2 is likely the most difficult part! You must choose an encoding of an individual such
that two individuals can cross-over and create a new individual and the new individual is still
viable. For example, as we discussed in class for tic-tac-toe players, you may create a high-
level state space and encode a policy of action responses to each state in your individual.
Other encodings are quite possible and may work even better! Even if you choose this
approach, you will need to design your state space carefully. We have given you a few ideas
in the writeup and in our sample agent but you will need to extend these ideas for your own
agent.

Once you have completed part 1 and 2, the remaining pieces of an evolutionary compu-
tation solution are selection, crossover and mutation. You need to pick approaches to each
of these using what we discussed in class. The following article on the web may be helpful:

http://www.tjhsst.edu/"ai/AI2001/GA.HTM

The following is a list of ideas for state space features. Note that this representation lacks
information about your ship’s current beacon count or your opponent’s health or ... (the list
goes on. You can’t represent it all in main memory so the problem must become partially
observable!).

e distance to nearest 3 asteroids: near, middle, far

e angle to nearest 3 asteroids: 4 values for each

distance to nearest beacon: near, middle, far

angle to nearest beacon: 4 values

health: low, middle, high



e number of ships in game: 1, 2, 3 or more
e distance to nearest ship (other than self): near, middle, far
e angle to nearest ship (other than self): 4 values

For this assignment, you SHOULD implement evolutionary computation. However, if
you are interested in reinforcement learning, you could also choose to use this approach.
BEWARE, we will NOT be covering RL in class. If you choose to implement RL, you
should only implement Q-learning or Sarsa-learning. The pseudo-code for SARSA is given
in table 6.9 of the RL book and the pseudo-code for Q-learning is given in table 6.12. T will
be happy to talk to you about RL outside of class if you choose this route. The RL book
can be read online at:
http://www.cs.ualberta.ca/~sutton/book/the-book.html.

Extra-credit opportunities

To keep grades within a fair range, all extra credit will be capped at 10 points. This
means that no project can receive a grade higher than 110, no matter if they win the ladder,
find great exploits, and are very creative.

Wanted dead or alive: exploits in the simulator

We are reasonably certain that you cannot exploit the simulator (say by directly affecting
your opponents health or by directly moving yourself to the goal location). However, any
project has bugs and we want to know about them! If you find an exploit to the simulator,
you can receive extra credit according to the following scale:

e 5 points: If you find an exploit and report it to us using the google code bug reporting
system, you can receive 5 points extra credit upon verification of the report.

e 10 points: If you find an exploit and give us a fix for it, you can receive 10 points
extra credit upon verification of both the exploit and the fix.

e 1 or 2 points: General simulator bugs are much more likely than exploits. Finding a
bug and reporting it using the google code bug reporting system can get you 1 point.
Fixing the bug and giving us the fix (you can’t check it in directly but you can give it
to us in the bug report) can get you two points. Both bug and fix must be verified for
any extra credit to be awarded.



Competition ladder

The class-wide competition ladder will start on March 13th (2 weeks before the project
is due). For this project, each game will be played with several heuristics, your agent, and
two of your fellow classmate’s agents (looping through all of them in a round robin fashion).

This ladder will be ranked differently than project 1. Players will be ranked first by the
average number of kills (rounded to the nearest tenth). Ties will be broken by an agent’s
number of deaths with fewer deaths being preferred. Further ties will be broken by the
number of beacons collected.

The first place player will receive one extra point for each night that that player wins
the ladder up to a maximum of 5 points. To win, you must be ranked above the random
player. The second place player will receive 1/2 extra point for each night that the player is
in second place. No player can receive more than 5 extra credit points from the ladder and
points will be distributed down the ladder accordingly should the maximum be reached.

Wanted (alive please): creative individuals

Creativity is highly encouraged! To make this real, there are up to 10 points of extra-
credit available for creative solutions. Some ideas here include: function approximation (this
environment is perfect for function approximation), reinforcement learning, and hierarchical
learning (e.g. learning to choose among the high-level behaviors and learning better low-level
behaviors such as improved steering, shooting, or obstacle avoidance).

e Document it in your writeup! I can’t very well give extra credit unless I know you did
something extra.

e You must still be doing either evolutionary computation or reinforcement learning

e Remember that by being creative I am referring to the algorithm and not to the ability
to creatively download code. All project code must be written exclusively by you except
for the sample code that we provide.

Implementation details

We have implemented a few of the high-level behaviors using the provided A* search
algorithm but you are VERY welcome to use your own code! The agent chooses among the
high-level behaviors randomly - you need to add the intelligence!



A learning agent needs to store the learned values somewhere and we have given you
a sample agent that uses xml to save the values across games. The agent has this ability
already using xml (Xstream). You can choose to use xstream or you can implement your
own input/output capability but you should load your knowledge file in initialize() and save
it out in shutdown(). The example agent shows how to do this. Also note that we have
added an isAlive() call to the ImmutableShip so that your ship will know when it has died.

Those pesky details

1. Update your Spacewar code from project 1. There have been a few API changes since
project 1 and your code will not work directly. In addition, you may need to do a
clean or else eclipse (or netbeans or whatever you are using to compile/edit) will be
confused.

2. Download the unpublished code from D2L. Please do not distribute this code as it is in-
tended for this year’s class only. It contains solutions to project 1 (AStar code). Install
this code in your src directory. When unzipped, it should create a directory called 'non-
publish’. You should use the example RandomGeneticAgent in src/nonpublish /agents
to start your project.

3. Run the ant build target 'project 2’ to see the sample project 2 agent working. You will
need to copy the RandomGeneticAgent to your 4x4 directory and the clientinit.xml in
examples/project2. You will need to modify TWO lines in clientinit.xml now. First,

<clientClass>nonpublish.agents.RandomGeneticAgent</clientClass>

The previous line should point to your 4x4 and your agent’s name. If you name your
agent, 4x4.MySpacewarAgent then change this package line to that.

<data>../../src/nonpublish/agents/knowledge.txt.gz</data>

The previous line should be modified ONLY to point at your 4x4. Leave the ../../ part
alone as it will be necessary for the ladder. For example, I would make mine read:

<data>../../src/my4x4/knowledge.txt.gz</data>

4. Create a ship that acts intelligently using learning as described above.



5. Ensure that your player runs on linux on the CSN class machines. You can ssh into
these machines or go into the lab personally to verify this. Java should be in your path
by default. If it is not, java lives in:

/opt/java/bin/java
6. Submit your project on codd.cs.ou.edu using the submit script as described below.

(a) Log into codd.cs.ou.edu using the account that was created for you for this class.
Your username is your 4x4 and your default password is cs#4x4.

(b) Make sure your working directory contains all the files you want to turn in. Using
a similar submit command to the previous projects, you would use the following
command to turn in your code.

/opt/ai4013/bin/submit CS4013 Project2 *.java clientinit.xml

(c) After the project deadline, the above command will not accept submissions. If
you want to turn in your project late, use:

/opt/ai4013/bin/submit CS4013 Project2Late *.java clientinit.xml

Point distribution

e 50 points for correctly implementing evolutionary computation. A correct player will
choose among the high-level actions intelligently and generally maximize the fitness
function. The ship will rarely run into obstacles, other ships, or bullets. It should try
to shoot a number of ships and have a long lifetime. It may also collect a fair number
of beacons by the end of the game. Sample projects and point distributions are given
below:

— 45 points if there is only one minor mistake. An example of a minor mistake would
be incorrectly implementing selection, off-by-one errors in state calculations, in-
correctly configuring your configuration files, and other minor coding errors.

— 40 points if there are several minor mistakes.

— 35 points if you have one major mistake. An example of a major mistake would
be accidentally starting your population over from scratch each generation (rather
than using selection), failing to crossover individuals, and other major errors.



— 25 if there are several major mistakes.

— 10 points if you implement a learning algorithm other than evolutionary computa-
tion or RL that at least moves the agent around the environment in an intelligent
manner.

— 5 points for an agent that at least does something other than random movements.

e 20 points for designing and correctly implementing a useful fitness (or reward if you
choose RL) function. This will be graded as follows:

— 15 points for one minor mistake. An example would be correctly designing a useful
fitness function but failing to implement it correctly (such as putting a minus sign
in the wrong place or having an off-by-one error).

— 10 points for several minor mistakes or one major mistake. An example of a major
mistake would be designing a fitness function that is not useful (e.g. a constant
fitness value is NOT useful).

e 10 points: We will randomly choose from one of the following good coding practices to
grade for these 10 points. Note that this will be included on every project. Are your
files well commented? Are your variable names descriptive (or are they all i, j, and k)?
Do you make good use of classes and methods or is the entire project in one big flat
file? This will be graded as follows:

— 10 points for well commented code, descriptive variables names or making good
use of classes and methods

— 5 points if you have partially commented code, semi-descriptive variable names,
or partial use of classes and methods

— 0 points if you have no comments in your code, variables are obscurely named, or
all your code is in a single flat method.

e 20 points for your writeup. A full-credit writeup will describe your choice of fitness
function and why you chose that function, your chose of knowledge representation
(the individual, the state representation, any actions, etc) and why you chose that
representation, your choice of learning parameters (selection, crossover, mutation, and
any required parameters to your chosen function), any creativity that you implemented
and why it worked or did not work. 10 points of this write up will be given for a learning
curve with time (games) on the x-axis and performance on the y-axis. To get all 10



points, this curve should demonstrate actual learning (meaning performance improves
over time). 5 points if you can at least give the curve and explain why you think it is
not learning. Additional learning curves measuring different forms of performance are
welcome.



