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Outline
• I have developed and tested deep-learning models for tornado prediction and front detection.

• Contributions to tornado prediction:
§ My model is competitive with a current operational ML model, promising for future use
§ I use novel interpretation methods to understand physical relationships learned by models

• Contributions to front detection:
§ My model automates front detection over large area (North America and surrounding oceans)
§ I create and analyze 40-year climatology
§ I compare with the few previous climos that investigate ENSO influence and long-term change

• I demonstrate that deep learning can improve prediction and understanding of diverse high-impact 
weather phenomena.



Tornado Prediction: Intro
• Skill of National Weather Service (NWS) tornado warnings 

has stagnated in the last decade (Brooks and Correia 2018).

• Meanwhile, amount of data/tools available to forecasters 
has exploded.
§ Dual-polarization radar
§ High-resolution satellite
§ Convection-allowing models
§ …etc.

• Problem: most of these data/tools do not explicitly resolve
tornadoes.

• This leaves forecasters to mentally post-process big data
into tornado predictions/warnings, leading to cognitive 
overload (Wilson et al. 2017).

• Post-processing can be automated by deep learning, which 
excels with big data.

Joplin tornado damage from: 
https://en.wikipedia.org/wiki/2011_Joplin_tornado#/media/File:Joplin_2011_tornado_damage.jpg

https://en.wikipedia.org/wiki/2011_Joplin_tornado


• I use convolutional neural nets (CNN), a
deep-learning method designed to learn
from gridded data.

• In traditional ML, gridded data must be 
converted to scalar statistics before 
training model.

• This destroys spatial info that could be 
exploited by the model.

• CNNs see the full grid, which generally 
improves skill.

• Specifically, I use CNN to forecast 
probability that a given storm will be 
tornadic in the next hour.

Image source: Olah et al. (2017)

Tornado Prediction: Intro



Tornado Prediction: Input Data
• I use the following datasets:

§ Radar images from MYRORSS and GridRad
§ Proximity soundings from RAP weather model
§ Tornado reports

• Details:
§ MYRORSS = Multi-year Reanalysis of Remotely Sensed Storms (Ortega et al. 2012)
§ GridRad = Gridded NEXRAD WSR-88D Radar (Homeyer and Bowman 2017)
§ RAP = Rapid Refresh (Benjamin et al. 2016)
§ Tornado reports from Severe Weather Data Inventory (SWDI)



Tornado Prediction: Input Data
• MYRORSS and GridRad are multi-radar

datasets, created by merging all WSR-88D
radars in the continental United States.

• Both datasets have 5-minute time steps.

• Datasets overlap for one year (2011), 
which is the testing year.

• MYRORSS:
§ Training: 2005-08
§ Validation: 2009-10

• GridRad:
§ Training: 2012-14
§ Validation: 2015-18 Image source: https://www.roc.noaa.gov/WSR88D/Maps.aspx

https://www.roc.noaa.gov/WSR88D/Maps.aspx


Tornado Prediction:
Input Data

• GridRad has 0.0208° horizontal 
spacing (~2 km) and contains 3-D 
fields of the following variables:

§ Reflectivity

§ Velocity-spectrum width 
(increases with mean wind 
speed and turbulence)

§ Vorticity (rotational wind)

§ Divergence



• MYRORSS contains the following variables:

§ Reflectivity
(0.01° horizontal spacing, or ~1 km)

§ Azimuthal shear
(0.005° horizontal spacing, or ~0.5 km)

Tornado Prediction:
Input Data



• MYRORSS contains the following variables:

§ Reflectivity
(0.01° horizontal spacing, or ~1 km)

§ Azimuthal shear
(0.005° horizontal spacing, or ~0.5 km)

• Azimuthal shear = 0.5 * vorticity

• “Low-level” = max from 0-2 km above ground (AGL)

• “Mid-level” = max from 3-6 km AGL

Tornado Prediction:
Input Data



• Before training CNNs, data must be 
pre-processed.

• One CNN input = one storm object 
(one storm at one time).

• Pre-processing steps are as follows:

1. Outline storm cells at each time step

2. Track storm cells over time

3. Create storm-centered radar images
§ One per storm object
§ On equidistant grid with storm 

motion towards the right

Tornado Prediction: Input Data

GridRad
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Tornado Prediction: Input Data
• Pre-processing steps are as follows:

4. Create proximity soundings
§ One per storm object
§ Represents near-storm environment

5. Link tornado reports to storms

6. Create labels
§ One per storm object
§ “Yes” if tornadic in next hour, else “no”



Convolutional Neural Networks (CNN)
• CNNs have three main components:

1. Convolutional layers

§ Made up of convolutional filters 
that detect spatial features.

§ Convolutional filters have been 
used in image-processing for 
decades for blurring, 
sharpening, edge detection, etc.

§ In traditional applications the 
filter weights are fixed; in a CNN
the weights are learned.

Image source:
http://i-systems.github.io/HSE545/machine%20learning%20all/Workshop/180208_COSEIK/06_CNN.html

http://i-systems.github.io/HSE545/machine%2520learning%2520all/Workshop/180208_COSEIK/06_CNN.html


Convolutional Neural Networks (CNN)
• CNNs have three main components:

2. Pooling layers

§ Downsample the grid to lower 
resolution.

§ Shallow conv layers (before much 
pooling) learn small-scale features, 
while deep conv layers learn large-
scale features.

§ Multiple scales often important for 
weather prediction.

Image source:
https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-

networks

https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks


• CNNs have three main components:

3. Dense (fully connected) layers
§ Spatially agnostic layers from traditional neural nets.
§ These transform features created by conv and pooling layers into final prediction.

• To summarize:
§ Conv and pooling layers transform gridded data into features.
§ Dense layers transform features into predictions.
§ CNN learns both transformations simultaneously.

• CNN architecture used for GridRad data shown on next page.

Convolutional Neural Networks (CNN)



Input: storm-centered radar 
image (3 of 12 heights shown) 
and proximity sounding (not 
shown)

(b-e) Feature maps produced by conv and pooling layers

Output (next-hour 
tornado probability)



Tornado Prediction: Hyperparameter Experiment

• “Hyperparameter” = characteristic of model itself (e.g., number of layers) that must be chosen a priori.
§ Model weights are fit to training data; hyperparameters are fit to validation data.

• I perform a grid search over 4 hyperparameters, which mainly control overfitting:
§ Weight for L2 regularization
§ Rate for dropout regularization
§ Number of dense layers
§ Data augmentation (on/off)

• For both MYRORSS and GridRad, I choose model with highest AUC (area under ROC curve) on validation 
data.



• Models generally 
perform best with data 
augmentation and 2 
dense layers (instead of 
1).

GridRad MYRORSS



Tornado Prediction: Hyperparameter Experiment

• Data augmentation, used during training, allows the CNN to generalize better (overfit less).
§ Apply small perturbations to predictors and assume that the label (tornadic or non-tornadic) 

stays the same.

• This allows the CNN to generalize better (overfit less).

• Specifically, I apply 17 perturbations to each storm-centered radar image:
§ Horizontal rotation (-15°, +15°, -30°, +30°)
§ Horizontal translation (move three grid cells in eight directions spaced equally from 0-315°)
§ Add Gaussian noise five times (variance of noise = 0.1 * variance of radar variable)



Data Augmentation
• Right: three perturbations for 

reflectivity at 3 km AGL.

• Same perturbations applied in tandem 
to all variables at all heights.



Tornado Prediction: Model Evaluation

• Right: results on testing data

• Testing sets for MYRORSS and GridRad
contain the same storm objects (ensured by 
matching technique)

• 116 629 storm objects, 3.19% tornadic in 
next hour

• AUC > 0.9 for both models, generally 
considered “excellent” performance

• However, maximum CSI is low (~0.3)

• Low CSI is typical for rare events, because 
high CSI requires high POD and low FAR



Tornado Prediction: Model Evaluation

• Results comparable to ProbSevere (Cintineo
et al. 2018), an ML model currently used in 
operations.

• ProbSevere achieves lower CSI (0.27) with 
higher event frequency (4.94%).

• However, comparison is not apples-to-
apples.
§ ProbSevere uses real-time version of 

MYRORSS data
§ ProbSevere predicts *all* severe weather 

(tornado or hail or damaging wind)

• Nonetheless, comparison suggests my CNNs 
would be useful in operations.



Tornado Prediction: Model Evaluation

• Right: same but excluding weak (EF-0
and EF-1) tornadoes

• Weak tornadoes are often not reported,
especially in remote areas and at night

• 114 427 storm objects, 1.33% tornadic in 
next hour

• If skill were independent of tornado 
strength, would except same AUC and 
decrease in CSI

• However, both AUC and CSI increase 
(models are better for strong tornadoes)



Tornado Prediction: Model Evaluation
• The next few slides will show extreme cases:

§ 100 best hits (tornadic storms with high CNN probability)
§ 100 worst false alarms (non-tornadic storms with high probability)
§ 100 worst misses (tornadic storms with low probability)
§ 100 best correct nulls (non-tornadic storms with low probability)

• Storm objects in each set are composited by probability-matched means (PMM; Ebert 2001).

• PMM preserves spatial structure better than computing mean grid point by grid point.



• Right: best hits for GridRad model 
(average CNN probability = 99.2%)

• In general, composite looks like a 
supercell.

Deep mesocyclone with strong rotation

Deep reflectivity core

Hook echo

Strong low-level convergence

Strong upper-level divergence



• Right: worst false alarms for GridRad
model (average CNN probability = 
98.8%)

• Worst false alarms look very similar to 
best hits.

• 76 of the 100 storms have an NWS 
tornado warning, so they are false 
alarms for humans as well.

• Similarity between best hits and false 
alarms caused by dichotomous 
labeling:
§ Funnel cloud that almost touches

down = “no”
§ Weak tornado that briefly 

touches down = “yes”



• Right: worst misses for GridRad
model (average CNN probability = 
8.6%)

• Shallow elongated reflectivity core 
with weak rotation.

• By inspection, 67 of the 100 storms 
are part of quasi-linear convective 
systems (QLCS).

• QLCS tornadoes are a common failure 
mode for humans and other 
forecasting methods (Brotzge et al.
2013; Anderson-Frey et al. 2016).



• Right: best correct nulls for GridRad
model (average CNN probability = 
0.004%)

• Weak reflectivity and rotation at all 
heights.

• By inspection, these storms are 
mostly short-lived cells in mesoscale 
convective systems (MCS).



Tornado Prediction: Model Interpretation
• I use several interpretation methods to understand physical relationships learned by the CNNs.

• I will show just a few results here (for more details, see McGovern et al. 2019 and 2020).

• Based on literature, expected the following features to be conducive to tornadoes:
§ Deep reflectivity core
§ Strongly rotating, compact low-level mesocyclone
§ Discrete storm (isolated from other storms)
§ Strong low-level wind shear, relative humidity, instability
§ Weak reflectivity in rear-flank downdraft (RFD)

Ø Strong reflectivity suggests a lot of evaporative cooling and negative buoyancy, which could 
prevent tornadogenesis (Markowski et al. 2002; Markowski and Richardson 2009)



Class-activation Maps (CAM)
• Class activation (Zhou et al. 2016) is amount of evidence for the positive class (tornado in next hour).

• Class activation is defined at each grid point, so can be viewed as a map.

• I will use “class activation” and “tornado evidence” interchangeably.



Below: composited CAMs for GridRad model

Tornado evidence maxxed on 
right-rear flank

Tornado evidence maxxed with 
max reflectivity and vorticity

Area with zero tornado 
evidence (outside 
white contour) reveals 
linear storm mode



• Right: composited CAMs for 
MYRORSS model

• Results are similar overall.

• Encouraging sign for 
generalizability, since 
MYRORSS and GridRad
models differ in the following:
§ Architecture
§ Input dataset
§ Training period

Tornado evidence maxxed on 
right-rear flank

Area with zero tornado 
evidence (outside 
white contour) reveals 
linear storm mode

Tornado evidence 
maxxed with max 

reflectivity and vorticity



Saliency Maps
• Saliency (Simonyan et al. 2014), also called sensitivity, is defined as follows.

saliency = *
𝜕𝑝
𝜕𝑥 !"!!

• 𝑝 = tornado probability
• 𝑥 = input value (one predictor at one grid point)
• 𝑥# = value of 𝑥 in actual storm

• Thus, saliency is a linear approximation to $%
$!

around the point 𝑥 = 𝑥#.



• Right: saliency map for best hits in 
GridRad model

• Solid (dashed) contours for positive 
(negative) saliency

ptornado increases with reflectivity 
in core, especially at upper levels

ptornado increases with vorticity in 
mesocyclone, especially at lower levels

ptornado increases with spectrum width



• Right: saliency map for worst misses 
in GridRad model

• Solid (dashed) contours for positive 
(negative) saliency

ptornado increases with all 
variables inside the storm

• Thus, ptornado increases as the storm 
becomes stronger and more discrete

ptornado decreases with all 
variables around the storm



• Right: saliency map for best hits in MYRORSS model

• Solid (dashed) contours for positive (negative) saliency

ptornado increases with reflectivity 
in core, especially at upper levels

ptornado decreases with reflectivity 
in RFD, especially at low levels

ptornado increases with rotation 
in low-level mesocyclone

ptornado increases as low-level 
mesocyclone contracts



Backward Optimization (BWO)
• Backward optimization (BWO; Erhan et al. 2009) creates synthetic input to minimize or maximize CNN 

prediction (tornado probability).



• I use BWO to decrease tornado probability for 
best hits in MYRORSS model.

• On average for the 100 storms, decreases 
probability from 99.6% to 9.7%.

• BWO has little effect, except in the sounding 
below 700 mb:
§ Creates deep temperature inversion,

reducing CAPE to zero
§ Decreases low-level wind speed and thus 

shear

§ However, synthetic sounding does not look 
very realistic (has the “jaggies”).

§ I use several physical constraints to alleviate 
this problem (looked much worse without).

§ Nonetheless, more work needed if we want to 
use ML to create realistic weather data.



Front Detection: Intro
• Synoptic-scale fronts 

(henceforth just “fronts”) often 
trigger extreme weather, 
including heavy precipitation 
and severe thunderstorms.

• A front is a transition zone 
between two air masses with 
different thermal properties.

• Typically defined by (potential) 
temperature, wet-bulb 
(potential) temperature, or 
equivalent (potential) 
temperature.
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Image source: Figure 9.6 of Lutgens and Tarbuck (2000)



• Front detection is usually done by hand or by numerical frontal analysis (NFA; Hewson 1998).

• Both have major disadvantages:
§ Hand analysis is time-consuming
§ NFA typically produces noisy results and captures only specific types of fronts

Ø Example: Schemm et al. (2015) found that commonly used method rarely detects warm fronts

• This has spurred recent efforts to use deep learning (Liu et al. 2016; Racah et al. 2017; Kurth et al. 2018; 
Kunkel et al. 2018; Lagerquist et al. 2019).

• CNNs are well suited for front detection, because they can directly process spatial grids.

Front Detection: Intro



• I use two datasets with 3-hour time 
steps:
§ ERA5 reanalysis (Hersbach and Dee 

2016) for predictors
§ Weather Prediction Center (WPC) 

surface fronts for labels

• I use the following ERA5 variables at both 
the surface and 850 mb:
§ Temperature
§ Specific humidity
§ Wind (u and v)

• Training: 2008-14
• Validation: 2015-16
• Testing: 2017

Front Detection: Input Data

Wet-bulb potential temperature (°C)

Cold front

Warm front

Predictors at surface
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• One CNN input = small “patch” at one time step.

• Patch is 33 x 33 grid cells (1056 x 1056 km).

• Label is based on type of front (if any) passing 
through center grid cell:
§ Warm front (WF)
§ Cold front (CF)
§ Neither (NF)

• I use grid search to optimize the following 
hyperparameters:
§ Predictors (tried u, v, T, q, qw, Z)
§ Vertical levels (tried surface, 1000 mb, 950 mb, 

900 mb, 850 mb)
§ Number of conv layers (tried values from 2-12)

• I do not use data augmentation for fronts (makes 
validation performance worse).

Front Detection: Machine Learning
Warm front

Cold front



Front Detection: Machine Learning
Warm front

Cold front
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• To apply trained CNN to full grid, slide 33 x 33 window around, centering on every grid cell.

• Before creating climatology, I convert probability fields to frontal zones, using method shown below.

Front Detection: Machine Learning

Probability fields (warm and cold)
Apply probability threshold of 65% Apply length threshold of 200 km





• The climatology spans 40 years (1979 to 2018).

• I will show the following analyses for both WF and CF frequency:
§ Averages over the 40 years
§ Variability relative to the El Niño – Southern Oscillation (ENSO)
§ Trends over the 40 years

• ”Frequency” = percentage of time steps with a warm or cold front.

Front Detection: Climatology



• Cold fronts are most common in 
mid-latitude cyclone track, 
especially over Pacific and Atlantic.

• Mid-latitude cyclone track moves 
~10° poleward from winter to 
summer, due to global annual 
heating cycle.

• Summer cold fronts in tropical 
eastern Pacific due almost entirely 
due to moisture gradients (invasion 
of dry subtropical air).
§ Berry et al. (2011b) found 

similar max in eastern tropical 
Pacific and made the same 
conclusion.

Average CF frequency by season



• Warm fronts are also most 
common in mid-latitude cyclone 
track.

• Large-scale WF maxima occur ~10°
north of large-scale CF maxima, 
due to mean frontal positions 
relative to parent cyclones.

• Warm fronts occur at land-sea 
boundaries more often than cold 
fronts.

• These occur only when there is 
warm advection across the 
boundary, so the CNN is not
mistaking stationary fronts as warm 
fronts.

• The CNN has learned that cold 
fronts are typically stronger, so 
advection across land-sea boundary 
reaches WF threshold more often 
than CF threshold.

Average WF frequency by season



• ENSO is an irregular periodic variation in sea-surface temperature (SST) across the equatorial Pacific.

• The two phases are El Niño (warm eastern Pacific) and La Niña (cool eastern Pacific).

Front Climatology: ENSO-relative Variability

Image source: World Meteorological Organization (2014)



Front Climatology: ENSO-relative Variability

• La Niña effects:

⟹ Roughly opposite (northward shift)

Image source: Figure 13 of Schemm et al. (2018)

• El Niño effects:

⟹ More convection in eastern Pacific
⟹ Hadley cell strengthens and contracts
⟹ Subtropical jet shifts southward
⟹ Mid-latitude cyclone track shifts 
southward



• I define ENSO phase by standardized anomaly of Niño 3.4 index (z):
§ Neutral: -0.5 < z < 0.5
§ Strong El Niño: z > 1
§ Strong La Niña: z < -1

• I will show the following differences for both WF and CF frequency:
§ Strong El Niño minus in neutral phase
§ Strong La Niña minus in neutral phase

• I use Monte Carlo test to find significant grid points.
§ Two-tailed test, 20 000 shuffling iterations, 95% confidence level
§ I shuffle entire spatial maps together to control false-discovery rate

• I will focus on winter and spring, when ENSO teleconnections are strongest.

Front Climatology: ENSO-relative Variability



• Southward shift in activity is consistent with southward shift in subtropical jet and cyclone track.
• Increased WF and CF frequency over Gulf of Mexico are consistent with eastward extension of subtropical jet.
• Hardy and Henderson (2003) found similar pattern but without significance.
• Increased WF and CF frequency over Hudson Bay maybe due to anomalous polar jet stream during El Niño.

CF-frequency difference WF-frequency difference

Strong El Niño in winter



• Northward shift in activity is consistent with northward shift in subtropical jet and cyclone track.
• Increased WF frequency over Bering Sea (with decrease along south coast of Alaska) could be due to La Niña shifting position of 

Aleutian low westward (Niebauer 1998).
• La Niña results weaker and less significant than El Niño, because La Niña is less common and has weaker teleconnections.
• Results for winter El Niño and La Niña are broadly consistent with previous climatology (Rudeva and Simmonds 2015).

CF-frequency difference WF-frequency difference

Strong La Niña in winter



• Overall, winter and spring responses to El Niño are similar (southward shift).
• Exceptions: spring response is weaker, and significant grid pts cover smaller range of latitudes.
• This is because spring has:

§ Weaker SST anomalies
§ Weaker westerly wind connecting mid-latitudes to tropical heat source

CF-frequency difference WF-frequency difference

Strong El Niño in spring



• Expected effects of global warming:
§ Poleward expansion of Hadley cell (Davis and Rosenlof 2012; Lucas et al. 2014; Schmidt and Grise 2017)
⟹ Poleward shift of subtropical jet and mid-latitude cyclone track
⟹ Poleward shift of front activity

§ Arctic amplification (Serreze and Barry 2011)
⟹ Weaker temperature gradient at high latitudes
⟹ Fewer fronts at high latitudes

• For each season I compute linear trend in WF and CF frequency.

• I use Mann-Kendall test to find significant grid points.
§ I use Equation 3 of Wilks (2016) to keep false-discovery rate below 10%
§ However, this method is overly conservative, leading to p-value threshold < 0.015

• Due to lack of significance in other seasons, I will show winter only.

Front Climatology: Long-term Trends



• Northward shift in activity is consistent with northward shift in subtropical jet and cyclone track.
• Decreased WF and CF frequency over Arctic are consistent with loss of baroclinicity due to Arctic amplification.

• Two previous climos (Rudeva and Simmonds 2015; Berry et al. 2011a) found the same patterns but with more significance.
• However, Berry et al. (2011a) found general decrease over Atlantic, rather than northward shift.
• Could learn more by applying CNN to climate-model output.

Cold fronts Warm fronts

Frequency trend (per 40 years) in winter



• I developed and tested CNNs for two tasks: next-hour tornado prediction and front detection.

• Tornado models perform competitively with operational model.

• Failure modes are non-tornadic supercells and tornadic QLCS cells (difficult for humans as well).

• CNN-interpretation methods highlight physical relationships involving:
§ Depth of reflectivity core
§ Strength and compactness of low-level mesocyclone
§ Discreteness of storm
§ Reflectivity in rear-flank downdraft

• Future work:
§ Operationalizing for Hazardous Weather Testbed
§ Comparing human vs. CNN interpretations
§ Improving performance for QLCS tornadoes
§ Using interpretation methods to guide discovery of new knowledge (like Wagstaff and Lee 2018 for Mars rovers)

• Papers: McGovern et al. (2019); McGovern et al. (2020); Lagerquist et al. (2020b, conditionally accepted)

Summary and Future Work



• Front detection: trained CNN to draw warm and cold fronts in reanalysis data.

• Created and analyzed 40-year climatology over North America:
§ Fronts most common in mid-latitude cyclone track
§ These fronts shift equatorward with El Niño, poleward with La Niña, may be shifting poleward over 

long term
§ Results generally consistent with previous climos that investigate ENSO and long-term change

(Berry et al. 2011a,b; Rudeva and Simmonds 2015)
§ Some results need more investigation (e.g., long-term trend in Atlantic)

• Future work:
§ Operationalize for use by forecasters
§ Investigate front activity in future climate
§ Investigate climatology of front-related extreme weather

• Papers: Lagerquist et al. (2019); Lagerquist et al. (2020a, conditionally accepted)

Summary and Future Work
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• Right: architecture for CNN trained 
with MYRORSS data.

§ (a) Storm-centered reflectivity at 1, 
2, …, 12 km AGL

§ (b) Storm-centered low-level and 
mid-level azimuthal shear

§ (c-f) Feature maps created by conv 
and pooling layers

• Another branch of the CNN does 
conv and pooling over the proximity 
sounding (not shown).

• Both sounding-derived and radar-
derived features are sent to dense 
layers.

• Pooling layers double horizontal grid 
spacing of radar image from 0.375 
km (original) to 0.75, 1.5, 3, 6, then 
12 km.

• Thus, shallow conv layers (near the 
left) learn small-scale features, while 
deep conv layers (near the right) 
learn large-scale features.



ML for Tornado Prediction: Gory Details
1. Each conv layer uses the leaky-ReLU activation function with slope = 0.2, followed by batch normalization.

2. Same for each dense layer except the last.

3. The last dense layer uses the sigmoid activation function, which forces its output (next-hour tornado probability) to 
range from 0…1.

4. I use L2 regularization for conv layers (strength of 10-3 for GridRad model, 10-2.5 for MYRORSS model).

5. I use dropout regularization for all dense layers except the last (dropout rate of 0.5 for GridRad model, 0.75 for 
MYRORS model).

6. To handle class imbalance, I resample training data to 50% positive examples and 50% negative (“positive example” 
= storm that is tornadic in the next hour).
§ Resampling is used only for training.
§ Results on validation and testing data are based on full distribution, where tornadoes are a rare event.

7. I use data augmentation during training (see earlier slide).



Tornado Prediction: Model Evaluation

• Right: monthly and hourly performance 
of MYRORSS model on testing data.

• AUC does not vary much with time.

• However, CSI varies a lot (sensitive to 
event frequency).

• CSI is best in afternoon and evening (18-
05 UTC) and spring, when tornadoes are 
most common.



Tornado Prediction: Model Evaluation

• Right: regional performance of 
MYRORSS model on testing data

• AUC does not vary much regionally 
(insensitive to event frequency).

• CSI varies a lot (increases with 
event frequency).

• CSI is best from southern Plains to 
southeast, where tornadoes are 
most common.



• Before training CNNs, data must be pre-processed:

1. Interpolate ERA5 data from lat-long grid (0.281) to equidistant grid (32 km)
§ Prevents issues that arise from unequal grid spacing (fronts overdetected near equator, 

underdetected near pole)

2. Rotate ERA5 winds from Earth-relative to grid-relative coordinates
§ Puts temperature gradient (∇𝑇), moisture gradient (∇𝑞), and wind vector (�⃗�) in the same coordinates
§ Makes it easier for CNN to represent quantities like advection (−�⃗� 4 ∇𝑇 and −�⃗� 4 ∇𝑞)

3. Convert WPC fronts to gridded masks (on the same 32-km grid as predictors)

Front Detection: Input Data



• Before training CNNs, data must be pre-processed:

4. Dilate WPC fronts
§ Replace each frontal grid cell with 3 x 3 neighbourhood
§ Turns fronts from 1-D lines into 2-D regions (more physically realistic)
§ Also accounts for representativity error due to grid spacing

Front Detection: Input Data



• Before training CNNs, data must 
be pre-processed:

5. Mask out grid cells where WPC 
does not typically label fronts
§ Specifically, mask out grid 

cells with < 100 fronts in 
the dataset

§ These grid cells are not 
used for model 
development (training, 
validation, and testing)

§ These grid cells are used to 
create the climatology, 
because at this point 
correct answers are not 
needed (CNN has already 
been trained)

Front Detection: Input Data



ML for Front Detection: Gory Details
1. Each conv layer uses the leaky-ReLU activation function with slope = 0.2, followed by batch 

normalization.

2. Same for each dense layer except the last.

3. The last dense layer uses the softmax activation function, which forces its outputs (three probabilities) 
to be positive and sum to 1.0.

4. I use L2 regularization for conv layers (strength of 10-3).

5. I use dropout regularization for all dense layers except the last (dropout rate of 0.5).

6. To handle class imbalance, I resample training data to 50% NF patches, 25% WF patches, 25% CF 
patches.
§ Resampling is used only for training.


